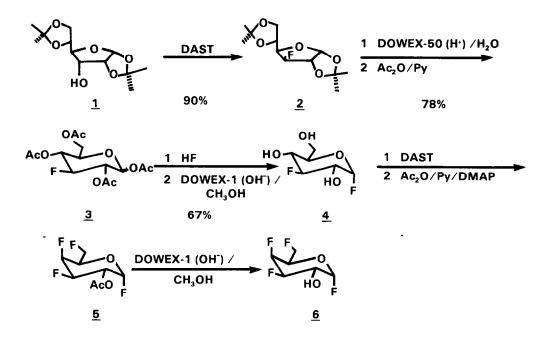
UTILITY OF DAST (DIETHYLAMINOSULFUR TRIFLUORIDE) IN THE CHEMISTRY OF CARBOHYDRATES: SYNTHESIS OF 3,4,6-TRIDEOXY-3,4,6-TRIFLUORO-α-D-GALACTOPYRANOSYL FLUORIDE George H. Klemm, Robert J. Kaufman and Ravinder S. Sidhu* Monsanto Agricultural Products Co. 800 N. Lindbergh Blvd. St. Louis, Missouri 63167 USA


<u>ABSTRACT</u>: The tetrafluorogalactose derivative <u>6</u> has been synthesized in five steps starting from a protected allose precursor.

During the past decade, the field of fluorinated carbohydrates has burgeoned into an area of intensive scientific investigation.^{1,2} The impetus for this interest has been the known biological activity of these compounds, serving as psuedo-substrates in enzyme inhibition studies. For example, 2-deoxy-2-fluoro hexoses have been shown to inhibit glycoprotein synthesis in uninfected and virus infected yeast cells.^{3,4} Another example involves the detrimental effect of 3-deoxy-3-fluoroglucose in the metabolism of <u>Sacchromyces cerevisiae</u>, leading to inhibition of polysaccharide synthesis.⁵

Specifically fluorinated carbohydrates also provide a unique stereochemical framework for investigations of conformation by techniques such as ${}^{1}\text{H}$ -, ${}^{13}\text{C}$ -, and ${}^{19}\text{F}$ -NMR spectroscopy. Although a variety of difluorinated carbohydrates have been investigated in this regard, very few if any, tri- and tetra-fluorinated analogs have similarly been examined: this is primarily due to a lack of efficient synthetic routes into such compounds. This letter details the synthesis of the first tetrafluorinated carbohydrate derivative (<u>6</u>) accompanied with a complete analysis of its ${}^{13}\text{C}$ -, ${}^{1}\text{H}$ -, and ${}^{19}\text{F}$ -NMR spectra.

3-Deoxy-3-fluoro- α -D-glucopyranosyl fluoride <u>4</u>, the key prefluorinated precursor needed for the synthesis of <u>6</u>, was obtained in 47% overall yield from commercially available 1,2:5,6-Di-O-isopropylidene- α -D-allose⁶, via modified literature methods (scheme)⁷. Compound <u>4</u> (4 g) was purified by crystallization from acetonitrile (10 mL); mp 232°C (dec); $[\alpha]_D^{22}$ +99.8° (c 2, MeOH); ¹H NMR (CD₃OD) δ 5.75 (ddd, 1H, J = 3.1, 4.1 and 53.3 Hz), 4.65 (dt, 1H, J = 53.3 and 53.7 Hz), 4.01 - 3.77 (m,5H)⁸. This compound was then converted to <u>6</u> in the following manner. Powdered <u>4</u> (2 g, 10.9 mmol) was added to neat DAST⁹ (10.1 g, 62.7 mmol) at room temperature, under nitrogen. The resulting heterogeneous reaction mixture was mechanically stirred for 5 d and then quenched, at 0°C, by the addition of a pyridine-acetic anhydride solution (100 mL, 2:1 v/v) containing 4-dimethylaminopyridine (0.1 g). After 1 d at room temperature, this solution was poured into ice water and processed by extraction with chloroform (4 x 100 mL). Standard work-up followed

2927

SCHEME

by chromatography on silica gel¹⁰, using 5% ethyl acetate-hexane as eluant, gave 5 (R_f 0.13); yield 1.21 g (48%); mp 59-60°C; $[\alpha]_D^{22}$ + 124.2° (c 2, CHCL₃)¹¹. Deacetylation of this material, using Dowex-1 (OH, 1 g) in methanol (100 mL), gave 6 as flaky white crystals: yield 0.8 g (96%); mp 120.5-122°C; $[\alpha]_D^{22}$ + 96.05° (c 2, MeOH)¹².

The regiochemistry and stereochemistry of the final product was established by detailed multinuclear NMR experiments; tables <u>1</u> and <u>2</u> summarize the chemical shifts and coupling constants, respectively. A perusal of this data provides good evidence for the introduction of fluorine at positions 4 and 6. Thus, the proton decoupled ¹⁹F-NMR spectrum produces a doublet for F-1, with J = 3.7 Hz, indicating long range coupling to F-3 and confirming the absence of fluorine at C-2. The stereochemistry at C-4 is clearly evident from the large trans diaxial vicinal couplings obtained for F-4 (${}^{3}J_{H_{3}F_{4}} = 26.8 \text{ Hz}; {}^{3}J_{H_{5}F_{4}} = 28.7 \text{ Hz}$) which contrasts with the smaller coupling constants expected for a H_aF_e vicinal arrangement (${}^{3}J_{F_{3}H_{2}} = 11 \text{ Hz}$). The recent reported conversion of methyl- α -D-glucopyranoside to methyl

$\overline{\mathbf{b}}$	 9	4.73,m				
	.9	4.80,m	81.78 , dd	-232.5,8	-232.5,td	
	5.	4.57,m	71.20,tđ			
	4.	5.27,ddd	88.09,ddd	-207.11,d	-207.11,bd(dd)
	°.	4.21,m (dt) 4.94,m (dddd) 5.27,ddd	89.41,dđ	-221.28,dd	-221.28,т	
	2.	4.21,m (đt)				
	1.	5.84,ddd	108.95,dd 67.95,td	-154.3,d	-154.3,ddd	
	RING POSI- TION NUCLEUS	H-1 ^b	c-13 ^c	$F-19^{d}$	F-19 ^e	

đ ¢ CHEMICAL SHIFTS (PPM) AND MULTIPLICITIES IN THE NMR SPECTRA OF TABLE 1.

d^proton decoupled spectrum recorded at 93.63 MHz using CD₃OD as solvent and CFCl₃ as an internal reference ^cProton decoupled spectrum recorded at 25 MHz using ČD₃OD as solvent and TMS as an internal reference ^bFully coupled spectrum recorded at 350 MHz using CD₃OD as solvent and TMS as an internal reference¹⁵ e Coupled spectrum recorded at 93.63 MHz using CD₃OD as solvent and CFCl₃ as an internal reference ⁴Multiplicities reported in brackets must be considered tentative first order assignments

	е-F6		47.0	169.3	
	6-6'	9.5			
	6-4				
	2-1 2-3 2-4 3-3 3-4 4-3 4-4 4-6 5-3 5-4 5-6 5-6 5-6 6-4 6-6 6-F 6		14.20	21.0	
	5-6'	6.5			
	5-6	5.2 6.5			
(2	5-4		28.7	21.0	
. (H:	5-3			181.7 6.6 3.7 21.0	
0 Е О	4-6			6.6	
AND HETERONUCLEAR COUPLING CONSTANTS OF 6. (Hz)	4-4		51.4	181.7	
	4 – 3				13.7
	3-4	2.7	47.2 26.8	18.4	13.7
R COUI	3-3		47.2	.0 22.7 22.7 ~2.0188.7 18.4	
UCLEA	2-4			~2.01	
TERON	2-3	10.1	11.0	22.7	
ND HE	2-1	5.4 10.1	25.0 11.0	22.7	
	1-3		2.9		3.7
IONUCL	1-1		53.0	226.8	
TABLE 2. HOMONUCLEAR	POSITION POSITION COUP-X-Y LING NUCLEL	$1_{H_{X}} - 1_{H_{Y}}$	$1_{H_{X}} - 19_{F_{Y}}$ 53.0	$1^{3}c_{x} - 1^{9}F_{y}$ 226.8 11	$19_{\rm F_X} - 19_{\rm F_y}$

1101 TARTE O 4,6-dideoxy-4,6-difluoro- α -D-galactopyranoside employing DAST, lends further credence to these conclusions.^{13,14} A full report on further applications of this methodology to the field of carbohydrates will be reported in the near future.

REFERENCES

- 1. A comprehensive review on the chemistry and biochemistry of fluorinated carbohydrates can be found in ref. 2.
- A. A. Penglis, <u>Adv. Carb. Chem. Biochem.</u>, <u>38</u>, p. 195-285, R. S. Tipson and D. Horton, Eds., Academic Press, N.Y., 1981.
- 3. M. F. G. Schmidt, R. T. Schwarz and H. Ludwig, J. Virol., 18, 819, (1976).
- 4. P. Biely, J. Kovarik and S. Bauer, J. Bacteriol, 115, 1108 (1973).
- 5. N. F. Taylor, Ciba Found. Symp., 215-238 (1972).
- 6. Pfanstiehl Labs, Inc., Waukegan, IL 60085.
- T. J. Tewson and M. J. Welch, <u>J. Org. Chem.</u>, <u>43</u> (6), 1090 (1978); A. B.
 Foster, R. Hems and J. M. Webber, <u>Carb. Res.</u>, <u>5</u>, 292 (1967); L. D. Hall,
 R. N. Johnson, A. B. Foster and J. H. Westwood, <u>Can. J. Chem.</u>, <u>41</u>, 236 (1971)
- 8. Anal. Calcd. for $C_{6}H_{10}O_{4}F_{2}$: C,39.14; H,5.47; F,20.64 Found: C,38.96; H,5.58; F,20.45.
- 9. DAST was prepared by the method of W. J. Middleton, <u>J. Org. Chem.</u>, <u>40 (5)</u>, 574 (1974); this material is also available from Aldrich Chem. Co., Milwaukee, Wis 53233.
- Chromatography was performed on a Waters Prep 500A HPLC system employing PREP-PAK cartridges (375 g silica gel).
- 11. Anal. Calcd. for C₈H₁₀O₃F₄: C,41.75; H,4.41; F,33.02 Found: C,41.85; H,4.38; F,32.89.
- 12. Anal. Calcd. for C₆H₈O₂F₄: C,38.31; H,4.29; F,40.40 Found: C,38.32; H,4.40; F,40.25.
- C. W. Somawardhana and E. G. Brunngraber, <u>Carb. Res.</u>, <u>94</u>, (1981), C14-C15.
- 14. R. J. Kaufman, G. H. Klemm and R. S. Sidhu unpublished results. We have confirmed this observation independently by obtaining a single crystal X-ray analysis of the final product. The space group of this molecule was determined to be P2₁ with a = 7.564 (4)Å, b = 4.964(3)Å, c = 11.944(8)Å, $\beta = 102.69(5)^{\circ}$. The structure was solved by direct phasing methods and refined to a discrepancy factor (r) of 0.0781 based on 704 observed reflections.
- 15. We thank Prof. W. H. Urry, Dept. of Chemistry, University of Chicago, Illinois, for his help in obtaining these spectra.

(Received in USA 4 February 1982)